高中一年级必学四数学复习要点笔记

点击数:647 | 发布时间:2024-11-09 | 来源:www.haoconghui.com

    每一个科目都有对应的学习技巧,但都是万变不离其中的,数学和语文英语一样,也是要记、要背、要讲练的。智学网为各位同学整理了《高中一年级必学四数学复习要点笔记》,期望对你的学习有所帮助!

    1.高中一年级必学四数学复习要点笔记 篇一


    函数的值域与最值

    函数的值域取决于概念域和对应法则,不论使用何种办法求函数值域都应先考虑其概念域,求函数值域常用办法如下:

    直接法:亦称察看法,对于结构较为简单的函数,可由函数的分析式应用不等式的性质,直接察看得出函数的值域.

    换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数分析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

    反函数法:借助函数f与其反函数f-1的概念域和值域间的关系,通过求反函数的概念域而得到原函数的值域,形如的函数值域可使用此法求得.

    配办法:对于二次函数或二次函数有关的函数的值域问题可考虑用配办法.

    不等式法求值域:借助基本不等式a+b≥[a,b∈]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等方法.

    辨别式法:把y=f变形为关于x的一元二次方程,借助“△≥0”求值域.其题型特点是分析式中含有根式或分式.

    借助函数的单调性求值域:当能确定函数在其概念域上的单调性,可使用单调性法求出函数的值域.

    数形结合法求函数的值域:借助函数所表示的几何意义,借用于几何办法或图象,求出函数的值域,即以数形结合求函数的值域.

    2.高中一年级必学四数学复习要点笔记 篇二


    映射、函数、反函数

    1、对应、映射、函数三个定义既有共性又有不同,映射是一种特殊的对应,而函数又是一种特殊的映射.

    2、对于函数的定义,应注意如下什么时间:

    学会构成函数的三要点,会判断两个函数是不是为同一函数.

    学会三种表示法——列表法、分析法、图象法,能根实质问题寻求变量间的函数关系式,尤其是会求分段函数的分析式.

    假如y=f,u=g,那样y=f[g]叫做f和g的复合函数,其中g为内函数,f为外函数.

    3、求函数y=f的反函数的一般步骤:

    确定原函数的值域,也就是反函数的概念域;

    由y=f的分析式求出x=f-1;

    将x,y对换,得反函数的习惯表达式y=f-1,并注明概念域.

    注意

    ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一块.

    ②熟知的应用,求f-1的值,合理借助这个结论,可以防止求反函数的过程,从而简化运算.

    3.高中一年级必学四数学复习要点笔记 篇三


    向量的向量积

    概念:两个向量a和b的向量积是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

    向量的向量积性质:

    ∣a×b∣是以a和b为边的平行四边形面积。

    a×a=0。

    a‖b〈=〉a×b=0。

    向量的向量积运算律

    a×b=-b×a;

    ×b=λ=a×;

    ×c=a×c+b×c.

    注:向量没除法,“向量AB/向量CD”是没意义的。

    4.高中一年级必学四数学复习要点笔记 篇四


    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin=sinα

    cosplay=cosplayα

    tan=tanα

    cot=cotα

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=-cosplayα

    tan=tanα

    cot=cotα

    任意角α与-α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    借助公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin=sinα

    cosplay=-cosplayα

    tan=-tanα

    cot=-cotα

    借助公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin=cosplayα

    cosplay=-sinα

    tan=-cotα

    cot=-tanα

    sin=cosplayα

    cosplay=sinα

    tan=cotα

    cot=tanα

    sin=-cosplayα

    cosplay=sinα

    tan=-cotα

    cot=-tanα

    sin=-cosplayα

    cosplay=-sinα

    tan=cotα

    cot=tanα


    5.高中一年级必学四数学复习要点笔记 篇五


    求动点的轨迹方程的常用办法:求轨迹方程的办法有多种,常见的有直译法、概念法、有关点法、参数法和交轨法等。

    直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的办法一般叫做直译法。

    概念法:假如可以确定动点的轨迹满足某种已知曲线的概念,则可借助曲线的概念写出方程,这种求轨迹方程的办法叫做概念法。

    有关点法:用动点Q的坐标x,y表示有关点P的坐标x0、y0,然后代入点P的坐标所满足的曲线方程,整理化方便得到动点Q轨迹方程,这种求轨迹方程的办法叫做有关点法。

    参数法:当动点坐标x、y之间的直接关系很难找到时,总是先探寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的办法叫做参数法。

    交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的办法叫做交轨法。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 中国考试人事网(https://www.bzgdwl.com/)
All Rights Reserverd ICP备18037099号-1

  • 中国考试人事网微博

  • 中国考试人事网

首页

财经

建筑

医疗